gball个人知识库
首页
基础组件
基础知识
算法&设计模式
  • 操作手册
  • 数据库
  • 极客时间
  • 每日随笔
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
  • 画图工具 (opens new window)
关于
  • 网盘 (opens new window)
  • 分类
  • 标签
  • 归档
项目
GitHub (opens new window)

ggball

后端界的小学生
首页
基础组件
基础知识
算法&设计模式
  • 操作手册
  • 数据库
  • 极客时间
  • 每日随笔
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
  • 画图工具 (opens new window)
关于
  • 网盘 (opens new window)
  • 分类
  • 标签
  • 归档
项目
GitHub (opens new window)
  • 面试

  • 数据库

  • linux

  • node

  • tensorFlow

  • 基础组件

  • 基础知识

  • 算法与设计模式

  • 分布式

  • 疑难杂症

  • go学习之旅

  • 极客时间

    • 设计模式之美

    • Redis核心技术与实战

      • 开篇词丨这样学Redis,才能技高一筹
      • 基本架构:一个键值数据库包含什么?
      • 数据结构:快速的Redis有哪些慢操作?
      • 高性能IO模型:为什么单线程Redis能那么快?
      • AOF日志:宕机了,Redis如何避免数据丢失?
      • 内存快照:宕机后,Redis如何实现快速恢复?
      • 数据同步:主从库如何实现数据一致?
      • 哨兵机制:主库挂了,如何不间断服务?
      • 哨兵集群:哨兵挂了,主从库还能切换吗?
      • 切片集群:数据增多了,是该加内存还是加实例?
      • 第1~9讲课后思考题答案及常见问题答疑
      • “万金油”的String,为什么不好用了?
      • 有一亿个keys要统计,应该用哪种集合?
      • GEO是什么?还可以定义新的数据类型吗?
      • 如何在Redis中保存时间序列数据?
      • 消息队列的考验:Redis有哪些解决方案?
      • 异步机制:如何避免单线程模型的阻塞?
      • 为什么CPU结构也会影响Redis的性能?
      • 波动的响应延迟:如何应对变慢的Redis?(上)
      • 波动的响应延迟:如何应对变慢的Redis?(下)
      • 删除数据后,为什么内存占用率还是很高?
      • 缓冲区:一个可能引发“惨案”的地方
      • 第11~21讲课后思考题答案及常见问题答疑
      • 旁路缓存:Redis是如何工作的?
      • 替换策略:缓存满了怎么办?
      • 缓存异常(上):如何解决缓存和数据库的数据不一致问题?
      • 缓存异常(下):如何解决缓存雪崩、击穿、穿透难题?
      • 缓存被污染了,该怎么办?
      • Pika如何基于SSD实现大容量Redis?
      • 无锁的原子操作:Redis如何应对并发访问?
      • 如何使用Redis实现分布式锁?
        • 单机上的锁和分布式锁的联系与区别
        • 基于单个Redis节点实现分布式锁
        • 基于多个Redis节点实现高可靠的分布式锁
        • 小结
        • 每课一问
        • 精选评论
      • 事务机制:Redis能实现ACID属性吗?
      • Redis主从同步与故障切换,有哪些坑?
      • 脑裂:一次奇怪的数据丢失
      • 第23~33讲课后思考题答案及常见问题答疑
      • Codis VS Redis Cluster:我该选择哪一个集群方案?
      • Redis支撑秒杀场景的关键技术和实践都有哪些?
      • 数据分布优化:如何应对数据倾斜?
      • 加餐(二)_ Kaito:我是如何学习Redis的?
      • 加餐(四)-Redis客户端如何与服务器端交换命令和数据?
      • 加餐(六)_ Redis的使用规范小建议
      • 加餐(一)_ 经典的Redis学习资料有哪些?
      • 加餐(三)-Kaito:我希望成为在压力中成长的人
      • 加餐(五)- Redis有哪些好用的运维工具?
      • 41 _ 第35~40讲课后思考题答案及常见问题答疑
      • 期中测试题-一套习题,测出你的掌握程度
      • 加餐(七) _ 从微博的Redis实践中,我们可以学到哪些经验?
      • 期中测试题答案-这些问题,你都答对了吗?
      • 结束语 _ 从学习Redis到向Redis学习
      • 38 _ 通信开销:限制Redis Cluster规模的关键因素
      • 40 _ Redis的下一步:基于NVM内存的实践

如何使用Redis实现分布式锁?

你好,我是蒋德钧。

上节课,我提到,在应对并发问题时,除了原子操作,Redis 客户端还可以通过加锁的方式,来控制并发写操作对共享数据的修改,从而保证数据的正确性。

但是,Redis 属于分布式系统,当有多个客户端需要争抢锁时,我们必须要保证,这把锁不能是某个客户端本地的锁。否则的话,其它客户端是无法访问这把锁的,当然也就不能获取这把锁了。

所以,在分布式系统中,当有多个客户端需要获取锁时,我们需要分布式锁。此时,锁是保存在一个共享存储系统中的,可以被多个客户端共享访问和获取。

Redis 本身可以被多个客户端共享访问,正好就是一个共享存储系统,可以用来保存分布式锁。而且 Redis 的读写性能高,可以应对高并发的锁操作场景。所以,这节课,我就来和你聊聊如何基于 Redis 实现分布式锁。

我们日常在写程序的时候,经常会用到单机上的锁,你应该也比较熟悉了。而分布式锁和单机上的锁既有相似性,但也因为分布式锁是用在分布式场景中,所以又具有一些特殊的要求。

所以,接下来,我就先带你对比下分布式锁和单机上的锁,找出它们的联系与区别,这样就可以加深你对分布式锁的概念和实现要求的理解。

# 单机上的锁和分布式锁的联系与区别

我们先来看下单机上的锁。

对于在单机上运行的多线程程序来说,锁本身可以用一个变量表示。

  • 变量值为 0 时,表示没有线程获取锁;

  • 变量值为 1 时,表示已经有线程获取到锁了。

我们通常说的线程调用加锁和释放锁的操作,到底是啥意思呢?我来解释一下。实际上,一个线程调用加锁操作,其实就是检查锁变量值是否为 0。如果是 0,就把锁的变量值设置为 1,表示获取到锁,如果不是 0,就返回错误信息,表示加锁失败,已经有别的线程获取到锁了。而一个线程调用释放锁操作,其实就是将锁变量的值置为 0,以便其它线程可以来获取锁。

我用一段代码来展示下加锁和释放锁的操作,其中,lock 为锁变量。

acquire_lock(){
  if lock == 0
     lock = 1
     return 1
  else
     return 0
} 

release_lock(){
  lock = 0
  return 1
}

1
2
3
4
5
6
7
8
9
10
11
12
13

和单机上的锁类似,分布式锁同样可以用一个变量来实现。客户端加锁和释放锁的操作逻辑,也和单机上的加锁和释放锁操作逻辑一致:加锁时同样需要判断锁变量的值,根据锁变量值来判断能否加锁成功;释放锁时需要把锁变量值设置为 0,表明客户端不再持有锁。

但是,和线程在单机上操作锁不同的是,在分布式场景下,锁变量需要由一个共享存储系统来维护,只有这样,多个客户端才可以通过访问共享存储系统来访问锁变量。相应的,加锁和释放锁的操作就变成了读取、判断和设置共享存储系统中的锁变量值。

这样一来,我们就可以得出实现分布式锁的两个要求。

  • 要求一:分布式锁的加锁和释放锁的过程,涉及多个操作。所以,在实现分布式锁时,我们需要保证这些锁操作的原子性;

  • 要求二:共享存储系统保存了锁变量,如果共享存储系统发生故障或宕机,那么客户端也就无法进行锁操作了。在实现分布式锁时,我们需要考虑保证共享存储系统的可靠性,进而保证锁的可靠性。

好了,知道了具体的要求,接下来,我们就来学习下 Redis 是怎么实现分布式锁的。

其实,我们既可以基于单个 Redis 节点来实现,也可以使用多个 Redis 节点实现。在这两种情况下,锁的可靠性是不一样的。我们先来看基于单个 Redis 节点的实现方法。

# 基于单个Redis节点实现分布式锁

作为分布式锁实现过程中的共享存储系统,Redis 可以使用键值对来保存锁变量,再接收和处理不同客户端发送的加锁和释放锁的操作请求。那么,键值对的键和值具体是怎么定的呢?

我们要赋予锁变量一个变量名,把这个变量名作为键值对的键,而锁变量的值,则是键值对的值,这样一来,Redis 就能保存锁变量了,客户端也就可以通过 Redis 的命令操作来实现锁操作。

为了帮助你理解,我画了一张图片,它展示 Redis 使用键值对保存锁变量,以及两个客户端同时请求加锁的操作过程。

图片

可以看到,Redis 可以使用一个键值对 lock_key:0 来保存锁变量,其中,键是 lock_key,也是锁变量的名称,锁变量的初始值是 0。

我们再来分析下加锁操作。

在图中,客户端 A 和 C 同时请求加锁。因为 Redis 使用单线程处理请求,所以,即使客户端 A 和 C 同时把加锁请求发给了 Redis,Redis 也会串行处理它们的请求。

我们假设 Redis 先处理客户端 A 的请求,读取 lock_key 的值,发现 lock_key 为 0,所以,Redis 就把 lock_key 的 value 置为 1,表示已经加锁了。紧接着,Redis 处理客户端 C 的请求,此时,Redis 会发现 lock_key 的值已经为 1 了,所以就返回加锁失败的信息。

刚刚说的是加锁的操作,那释放锁该怎么操作呢?其实,释放锁就是直接把锁变量值设置为 0。

我还是借助一张图片来解释一下。这张图片展示了客户端 A 请求释放锁的过程。当客户端 A 持有锁时,锁变量 lock_key 的值为 1。客户端 A 执行释放锁操作后,Redis 将 lock_key 的值置为 0,表明已经没有客户端持有锁了。

图片

因为加锁包含了三个操作(读取锁变量、判断锁变量值以及把锁变量值设置为 1),而这三个操作在执行时需要保证原子性。那怎么保证原子性呢?

上节课,我们学过,要想保证操作的原子性,有两种通用的方法,分别是使用 Redis 的单命令操作和使用 Lua 脚本。那么,在分布式加锁场景下,该怎么应用这两个方法呢?

我们先来看下,Redis 可以用哪些单命令操作实现加锁操作。

首先是 SETNX 命令,它用于设置键值对的值。具体来说,就是这个命令在执行时会判断键值对是否存在,如果不存在,就设置键值对的值,如果存在,就不做任何设置。

举个例子,如果执行下面的命令时,key 不存在,那么 key 会被创建,并且值会被设置为 value;如果 key 已经存在,SETNX 不做任何赋值操作。

SETNX key value

1
2

对于释放锁操作来说,我们可以在执行完业务逻辑后,使用 DEL 命令删除锁变量。不过,你不用担心锁变量被删除后,其他客户端无法请求加锁了。因为 SETNX 命令在执行时,如果要设置的键值对(也就是锁变量)不存在,SETNX 命令会先创建键值对,然后设置它的值。所以,释放锁之后,再有客户端请求加锁时,SETNX 命令会创建保存锁变量的键值对,并设置锁变量的值,完成加锁。

总结来说,我们就可以用 SETNX 和 DEL 命令组合来实现加锁和释放锁操作。下面的伪代码示例显示了锁操作的过程,你可以看下。

// 加锁
SETNX lock_key 1
// 业务逻辑
DO THINGS
// 释放锁
DEL lock_key

1
2
3
4
5
6
7

不过,使用 SETNX 和 DEL 命令组合实现分布锁,存在两个潜在的风险。

第一个风险是,假如某个客户端在执行了 SETNX 命令、加锁之后,紧接着却在操作共享数据时发生了异常,结果一直没有执行最后的 DEL 命令释放锁。因此,锁就一直被这个客户端持有,其它客户端无法拿到锁,也无法访问共享数据和执行后续操作,这会给业务应用带来影响。

针对这个问题,一个有效的解决方法是,给锁变量设置一个过期时间。这样一来,即使持有锁的客户端发生了异常,无法主动地释放锁,Redis 也会根据锁变量的过期时间,在锁变量过期后,把它删除。其它客户端在锁变量过期后,就可以重新请求加锁,这就不会出现无法加锁的问题了。

我们再来看第二个风险。如果客户端 A 执行了 SETNX 命令加锁后,假设客户端 B 执行了 DEL 命令释放锁,此时,客户端 A 的锁就被误释放了。如果客户端 C 正好也在申请加锁,就可以成功获得锁,进而开始操作共享数据。这样一来,客户端 A 和 C 同时在对共享数据进行操作,数据就会被修改错误,这也是业务层不能接受的。

为了应对这个问题,我们需要能区分来自不同客户端的锁操作,具体咋做呢?其实,我们可以在锁变量的值上想想办法。

在使用 SETNX 命令进行加锁的方法中,我们通过把锁变量值设置为 1 或 0,表示是否加锁成功。1 和 0 只有两种状态,无法表示究竟是哪个客户端进行的锁操作。所以,我们在加锁操作时,可以让每个客户端给锁变量设置一个唯一值,这里的唯一值就可以用来标识当前操作的客户端。在释放锁操作时,客户端需要判断,当前锁变量的值是否和自己的唯一标识相等,只有在相等的情况下,才能释放锁。这样一来,就不会出现误释放锁的问题了。

知道了解决方案,那么,在 Redis 中,具体是怎么实现的呢?我们再来了解下。

在查看具体的代码前,我要先带你学习下 Redis 的 SET 命令。

我们刚刚在说 SETNX 命令的时候提到,对于不存在的键值对,它会先创建再设置值(也就是“不存在即设置”),为了能达到和 SETNX 命令一样的效果,Redis 给 SET 命令提供了类似的选项 NX,用来实现“不存在即设置”。如果使用了 NX 选项,SET 命令只有在键值对不存在时,才会进行设置,否则不做赋值操作。此外,SET 命令在执行时还可以带上 EX 或 PX 选项,用来设置键值对的过期时间。

举个例子,执行下面的命令时,只有 key 不存在时,SET 才会创建 key,并对 key 进行赋值。另外,key 的存活时间由 seconds 或者 milliseconds 选项值来决定。

SET key value [EX seconds | PX milliseconds]  [NX]

1
2

有了 SET 命令的 NX 和 EX/PX 选项后,我们就可以用下面的命令来实现加锁操作了。

// 加锁, unique_value作为客户端唯一性的标识
SET lock_key unique_value NX PX 10000

1
2
3

其中,unique_value 是客户端的唯一标识,可以用一个随机生成的字符串来表示,PX 10000 则表示 lock_key 会在 10s 后过期,以免客户端在这期间发生异常而无法释放锁。

因为在加锁操作中,每个客户端都使用了一个唯一标识,所以在释放锁操作时,我们需要判断锁变量的值,是否等于执行释放锁操作的客户端的唯一标识,如下所示:

//释放锁 比较unique_value是否相等,避免误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

1
2
3
4
5
6
7

这是使用 Lua 脚本(unlock.script)实现的释放锁操作的伪代码,其中,KEYS[1]表示 lock_key,ARGV[1]是当前客户端的唯一标识,这两个值都是我们在执行 Lua 脚本时作为参数传入的。

最后,我们执行下面的命令,就可以完成锁释放操作了。

redis-cli  --eval  unlock.script lock_key , unique_value 

1
2

你可能也注意到了,在释放锁操作中,我们使用了 Lua 脚本,这是因为,释放锁操作的逻辑也包含了读取锁变量、判断值、删除锁变量的多个操作,而 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,从而保证了锁释放操作的原子性。

好了,到这里,你了解了如何使用 SET 命令和 Lua 脚本在 Redis 单节点上实现分布式锁。但是,我们现在只用了一个 Redis 实例来保存锁变量,如果这个 Redis 实例发生故障宕机了,那么锁变量就没有了。此时,客户端也无法进行锁操作了,这就会影响到业务的正常执行。所以,我们在实现分布式锁时,还需要保证锁的可靠性。那怎么提高呢?这就要提到基于多个 Redis 节点实现分布式锁的方式了。

# 基于多个Redis节点实现高可靠的分布式锁

当我们要实现高可靠的分布式锁时,就不能只依赖单个的命令操作了,我们需要按照一定的步骤和规则进行加解锁操作,否则,就可能会出现锁无法工作的情况。“一定的步骤和规则”是指啥呢?其实就是分布式锁的算法。

为了避免 Redis 实例故障而导致的锁无法工作的问题,Redis 的开发者 Antirez 提出了分布式锁算法 Redlock。

Redlock 算法的基本思路,是让客户端和多个独立的 Redis 实例依次请求加锁,如果客户端能够和半数以上的实例成功地完成加锁操作,那么我们就认为,客户端成功地获得分布式锁了,否则加锁失败。这样一来,即使有单个 Redis 实例发生故障,因为锁变量在其它实例上也有保存,所以,客户端仍然可以正常地进行锁操作,锁变量并不会丢失。

我们来具体看下 Redlock 算法的执行步骤。Redlock 算法的实现需要有 N 个独立的 Redis 实例。接下来,我们可以分成 3 步来完成加锁操作。

第一步是,客户端获取当前时间。

第二步是,客户端按顺序依次向 N 个 Redis 实例执行加锁操作。

这里的加锁操作和在单实例上执行的加锁操作一样,使用 SET 命令,带上 NX,EX/PX 选项,以及带上客户端的唯一标识。当然,如果某个 Redis 实例发生故障了,为了保证在这种情况下,Redlock 算法能够继续运行,我们需要给加锁操作设置一个超时时间。

如果客户端在和一个 Redis 实例请求加锁时,一直到超时都没有成功,那么此时,客户端会和下一个 Redis 实例继续请求加锁。加锁操作的超时时间需要远远地小于锁的有效时间,一般也就是设置为几十毫秒。

第三步是,一旦客户端完成了和所有 Redis 实例的加锁操作,客户端就要计算整个加锁过程的总耗时。

客户端只有在满足下面的这两个条件时,才能认为是加锁成功。

  • 条件一:客户端从超过半数(大于等于 N/2+1)的 Redis 实例上成功获取到了锁;

  • 条件二:客户端获取锁的总耗时没有超过锁的有效时间。

在满足了这两个条件后,我们需要重新计算这把锁的有效时间,计算的结果是锁的最初有效时间减去客户端为获取锁的总耗时。如果锁的有效时间已经来不及完成共享数据的操作了,我们可以释放锁,以免出现还没完成数据操作,锁就过期了的情况。

当然,如果客户端在和所有实例执行完加锁操作后,没能同时满足这两个条件,那么,客户端向所有 Redis 节点发起释放锁的操作。

在 Redlock 算法中,释放锁的操作和在单实例上释放锁的操作一样,只要执行释放锁的 Lua 脚本就可以了。这样一来,只要 N 个 Redis 实例中的半数以上实例能正常工作,就能保证分布式锁的正常工作了。

所以,在实际的业务应用中,如果你想要提升分布式锁的可靠性,就可以通过 Redlock 算法来实现。

# 小结

分布式锁是由共享存储系统维护的变量,多个客户端可以向共享存储系统发送命令进行加锁或释放锁操作。Redis 作为一个共享存储系统,可以用来实现分布式锁。

在基于单个 Redis 实例实现分布式锁时,对于加锁操作,我们需要满足三个条件。

  • 加锁包括了读取锁变量、检查锁变量值和设置锁变量值三个操作,但需要以原子操作的方式完成,所以,我们使用 SET 命令带上 NX 选项来实现加锁;

  • 锁变量需要设置过期时间,以免客户端拿到锁后发生异常,导致锁一直无法释放,所以,我们在 SET 命令执行时加上 EX/PX 选项,设置其过期时间;

  • 锁变量的值需要能区分来自不同客户端的加锁操作,以免在释放锁时,出现误释放操作,所以,我们使用 SET 命令设置锁变量值时,每个客户端设置的值是一个唯一值,用于标识客户端。

和加锁类似,释放锁也包含了读取锁变量值、判断锁变量值和删除锁变量三个操作,不过,我们无法使用单个命令来实现,所以,我们可以采用 Lua 脚本执行释放锁操作,通过 Redis 原子性地执行 Lua 脚本,来保证释放锁操作的原子性。

不过,基于单个 Redis 实例实现分布式锁时,会面临实例异常或崩溃的情况,这会导致实例无法提供锁操作,正因为此,Redis 也提供了 Redlock 算法,用来实现基于多个实例的分布式锁。这样一来,锁变量由多个实例维护,即使有实例发生了故障,锁变量仍然是存在的,客户端还是可以完成锁操作。Redlock 算法是实现高可靠分布式锁的一种有效解决方案,你可以在实际应用中把它用起来。

# 每课一问

按照惯例,我给你提个小问题。这节课,我提到,我们可以使用 SET 命令带上 NX 和 EX/PX 选项进行加锁操作,那么,我想请你再思考一下,我们是否可以用下面的方式来实现加锁操作呢?

// 加锁
SETNX lock_key unique_value
EXPIRE lock_key 10S
// 业务逻辑
DO THINGS

1
2
3
4
5
6

欢迎在留言区写下你的思考和答案,我们一起交流讨论。如果你觉得今天的内容对你有所帮助,也欢迎你分享给你的朋友或同事。我们下节课见。

# 精选评论

点击查看

Kaito

是否可以使用 SETNX + EXPIRE 来完成加锁操作?

不可以这么使用。使用 2 个命令无法保证操作的原子性,在异常情况下,加锁结果会不符合预期。异常情况主要分为以下几种情况:

1、SETNX 执行成功,执行 EXPIRE 时由于网络问题设置过期失败

2、SETNX 执行成功,此时 Redis 实例宕机,EXPIRE 没有机会执行

3、SETNX 执行成功,客户端异常崩溃,EXPIRE 没有机会执行

如果发生以上情况,并且客户端在释放锁时发生异常,没有正常释放锁,那么这把锁就会一直无法释放,其他线程都无法再获得锁。

下面说一下关于 Redis 分布式锁可靠性的问题。

使用单个 Redis 节点(只有一个master)使用分布锁,如果实例宕机,那么无法进行锁操作了。那么采用主从集群模式部署是否可以保证锁的可靠性?

答案是也很难保证。如果在 master 上加锁成功,此时 master 宕机,由于主从复制是异步的,加锁操作的命令还未同步到 slave,此时主从切换,新 master 节点依旧会丢失该锁,对业务来说相当于锁失效了。

所以 Redis 作者才提出基于多个 Redis 节点(master节点)的 Redlock 算法,但这个算法涉及的细节很多,作者在提出这个算法时,业界的分布式系统专家还与 Redis 作者发生过一场争论,来评估这个算法的可靠性,争论的细节都是关于异常情况可能导致 Redlock 失效的场景,例如加锁过程中客户端发生了阻塞、机器时钟发生跳跃等等。

感兴趣的可以看下这篇文章,详细介绍了争论的细节,以及 Redis 分布式锁在各种异常情况是否安全的分析,收益会非常大:http://zhangtielei.com/posts/blog-redlock-reasoning.html。

简单总结,基于 Redis 使用分布锁的注意点:

1、使用 SET $lock_key $unique_val EX $second NX 命令保证加锁原子性,并为锁设置过期时间

2、锁的过期时间要提前评估好,要大于操作共享资源的时间

3、每个线程加锁时设置随机值,释放锁时判断是否和加锁设置的值一致,防止自己的锁被别人释放

4、释放锁时使用 Lua 脚本,保证操作的原子性

5、基于多个节点的 Redlock,加锁时超过半数节点操作成功,并且获取锁的耗时没有超过锁的有效时间才算加锁成功

6、Redlock 释放锁时,要对所有节点释放(即使某个节点加锁失败了),因为加锁时可能发生服务端加锁成功,由于网络问题,给客户端回复网络包失败的情况,所以需要把所有节点可能存的锁都释放掉

7、使用 Redlock 时要避免机器时钟发生跳跃,需要运维来保证,对运维有一定要求,否则可能会导致 Redlock 失效。例如共 3 个节点,线程 A 操作 2 个节点加锁成功,但其中 1 个节点机器时钟发生跳跃,锁提前过期,线程 B 正好在另外 2 个节点也加锁成功,此时 Redlock 相当于失效了(Redis 作者和分布式系统专家争论的重要点就在这)

8、如果为了效率,使用基于单个 Redis 节点的分布式锁即可,此方案缺点是允许锁偶尔失效,优点是简单效率高

9、如果是为了正确性,业务对于结果要求非常严格,建议使用 Redlock,但缺点是使用比较重,部署成本高
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

林肯不肯


// 加锁, unique_value作为客户端唯一性的标识
SET lock_key unique_value NX PX 10000
每个客户端的key都不一样,那还怎么加锁呢?加锁都本质就是多个客户端操作同一个共享变量啊?
1
2
3
4

小狼


杨逸林

针对这个问题,一个有效的解决方法是,给锁变量设置一个过期时间。
有一种情况,假如 A 系统获得了锁,设置了过期时间为 5s。假如 A 系统执行了一个比较慢的操作,费时 6s,刚好在 5-6s 之间,有个 B 系统看没有人创建键值对,然后也获得了锁。这种情况怎么办
1
2

番茄smd

不知道后面会不会讲解redisson
1

三木子

SETNX lock_key unique_value
EXPIRE lock_key 10S
这是两条命令操作,不能保证原子性了
1
2
3

test

不能这样做,因为两个命令就不是原子操作了。

set nx px的时候如果拿到锁的客户端在使用过程中超出了其设置的超时时间,那么就有这把锁同时被两个客户端持有的风险,所以需要在使用过程中不断去更新其过期时间。
1
2
3

写点啥呢

请问老师,redis分布式锁有没有提供加锁失败->进程挂起->锁释放唤醒挂起进程的方案,避免SETNX失败后进程自旋。
1

oops

不能,2个命令没法保证原子性
1

#极客时间
上次更新: 2025/06/04, 15:06:15
无锁的原子操作:Redis如何应对并发访问?
事务机制:Redis能实现ACID属性吗?

← 无锁的原子操作:Redis如何应对并发访问? 事务机制:Redis能实现ACID属性吗?→

最近更新
01
AIIDE
03-07
02
githubActionCICD实战
03-07
03
windows安装Deep-Live-Cam教程
08-11
更多文章>
Theme by Vdoing
总访问量 次 | 总访客数 人
| Copyright © 2021-2025 ggball | 赣ICP备2021008769号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式
×

评论

  • 评论 ssss
  • 回复
  • 评论 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
  • 回复
  • 评论 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
  • 回复
×