gball个人知识库
首页
基础组件
基础知识
算法&设计模式
  • 操作手册
  • 数据库
  • 极客时间
  • 每日随笔
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
  • 画图工具 (opens new window)
关于
  • 网盘 (opens new window)
  • 分类
  • 标签
  • 归档
项目
GitHub (opens new window)

ggball

后端界的小学生
首页
基础组件
基础知识
算法&设计模式
  • 操作手册
  • 数据库
  • 极客时间
  • 每日随笔
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
  • 画图工具 (opens new window)
关于
  • 网盘 (opens new window)
  • 分类
  • 标签
  • 归档
项目
GitHub (opens new window)
  • 面试

  • 数据库

  • linux

  • node

  • tensorFlow

  • 基础组件

  • 基础知识

  • 算法与设计模式

  • 分布式

  • 疑难杂症

  • go学习之旅

  • 极客时间

    • 设计模式之美

    • Redis核心技术与实战

      • 开篇词丨这样学Redis,才能技高一筹
      • 基本架构:一个键值数据库包含什么?
      • 数据结构:快速的Redis有哪些慢操作?
      • 高性能IO模型:为什么单线程Redis能那么快?
      • AOF日志:宕机了,Redis如何避免数据丢失?
      • 内存快照:宕机后,Redis如何实现快速恢复?
      • 数据同步:主从库如何实现数据一致?
      • 哨兵机制:主库挂了,如何不间断服务?
      • 哨兵集群:哨兵挂了,主从库还能切换吗?
      • 切片集群:数据增多了,是该加内存还是加实例?
      • 第1~9讲课后思考题答案及常见问题答疑
      • “万金油”的String,为什么不好用了?
      • 有一亿个keys要统计,应该用哪种集合?
      • GEO是什么?还可以定义新的数据类型吗?
      • 如何在Redis中保存时间序列数据?
      • 消息队列的考验:Redis有哪些解决方案?
      • 异步机制:如何避免单线程模型的阻塞?
      • 为什么CPU结构也会影响Redis的性能?
      • 波动的响应延迟:如何应对变慢的Redis?(上)
      • 波动的响应延迟:如何应对变慢的Redis?(下)
      • 删除数据后,为什么内存占用率还是很高?
      • 缓冲区:一个可能引发“惨案”的地方
      • 第11~21讲课后思考题答案及常见问题答疑
      • 旁路缓存:Redis是如何工作的?
      • 替换策略:缓存满了怎么办?
      • 缓存异常(上):如何解决缓存和数据库的数据不一致问题?
      • 缓存异常(下):如何解决缓存雪崩、击穿、穿透难题?
      • 缓存被污染了,该怎么办?
      • Pika如何基于SSD实现大容量Redis?
      • 无锁的原子操作:Redis如何应对并发访问?
        • 并发访问中需要对什么进行控制?
        • Redis的两种原子操作方法
        • 小结
        • 每课一问
        • 精选评论
      • 如何使用Redis实现分布式锁?
      • 事务机制:Redis能实现ACID属性吗?
      • Redis主从同步与故障切换,有哪些坑?
      • 脑裂:一次奇怪的数据丢失
      • 第23~33讲课后思考题答案及常见问题答疑
      • Codis VS Redis Cluster:我该选择哪一个集群方案?
      • Redis支撑秒杀场景的关键技术和实践都有哪些?
      • 数据分布优化:如何应对数据倾斜?
      • 加餐(二)_ Kaito:我是如何学习Redis的?
      • 加餐(四)-Redis客户端如何与服务器端交换命令和数据?
      • 加餐(六)_ Redis的使用规范小建议
      • 加餐(一)_ 经典的Redis学习资料有哪些?
      • 加餐(三)-Kaito:我希望成为在压力中成长的人
      • 加餐(五)- Redis有哪些好用的运维工具?
      • 41 _ 第35~40讲课后思考题答案及常见问题答疑
      • 期中测试题-一套习题,测出你的掌握程度
      • 加餐(七) _ 从微博的Redis实践中,我们可以学到哪些经验?
      • 期中测试题答案-这些问题,你都答对了吗?
      • 结束语 _ 从学习Redis到向Redis学习
      • 38 _ 通信开销:限制Redis Cluster规模的关键因素
      • 40 _ Redis的下一步:基于NVM内存的实践

无锁的原子操作:Redis如何应对并发访问?

你好,我是蒋德钧。

我们在使用 Redis 时,不可避免地会遇到并发访问的问题,比如说如果多个用户同时下单,就会对缓存在 Redis 中的商品库存并发更新。一旦有了并发写操作,数据就会被修改,如果我们没有对并发写请求做好控制,就可能导致数据被改错,影响到业务的正常使用(例如库存数据错误,导致下单异常)。

为了保证并发访问的正确性,Redis 提供了两种方法,分别是加锁和原子操作。

加锁是一种常用的方法,在读取数据前,客户端需要先获得锁,否则就无法进行操作。当一个客户端获得锁后,就会一直持有这把锁,直到客户端完成数据更新,才释放这把锁。

看上去好像是一种很好的方案,但是,其实这里会有两个问题:一个是,如果加锁操作多,会降低系统的并发访问性能;第二个是,Redis 客户端要加锁时,需要用到分布式锁,而分布式锁实现复杂,需要用额外的存储系统来提供加解锁操作,我会在下节课向你介绍。

原子操作是另一种提供并发访问控制的方法。原子操作是指执行过程保持原子性的操作,而且原子操作执行时并不需要再加锁,实现了无锁操作。这样一来,既能保证并发控制,还能减少对系统并发性能的影响。

这节课,我就来和你聊聊 Redis 中的原子操作。原子操作的目标是实现并发访问控制,那么当有并发访问请求时,我们具体需要控制什么呢?接下来,我就先向你介绍下并发控制的内容。

# 并发访问中需要对什么进行控制?

我们说的并发访问控制,是指对多个客户端访问操作同一份数据的过程进行控制,以保证任何一个客户端发送的操作在 Redis 实例上执行时具有互斥性。例如,客户端 A 的访问操作在执行时,客户端 B 的操作不能执行,需要等到 A 的操作结束后,才能执行。

并发访问控制对应的操作主要是数据修改操作。当客户端需要修改数据时,基本流程分成两步:

  • 客户端先把数据读取到本地,在本地进行修改;

  • 客户端修改完数据后,再写回 Redis。

我们把这个流程叫做“读取 - 修改 - 写回”操作(Read-Modify-Write,简称为 RMW 操作)。当有多个客户端对同一份数据执行 RMW 操作的话,我们就需要让 RMW 操作涉及的代码以原子性方式执行。访问同一份数据的 RMW 操作代码,就叫做临界区代码。

不过,当有多个客户端并发执行临界区代码时,就会存在一些潜在问题,接下来,我用一个多客户端更新商品库存的例子来解释一下。

我们先看下临界区代码。假设客户端要对商品库存执行扣减 1 的操作,伪代码如下所示:

current = GET(id)
current--
SET(id, current)

1
2
3
4

可以看到,客户端首先会根据商品 id,从 Redis 中读取商品当前的库存值 current(对应 Read),然后,客户端对库存值减 1(对应 Modify),再把库存值写回 Redis(对应 Write)。当有多个客户端执行这段代码时,这就是一份临界区代码。

如果我们对临界区代码的执行没有控制机制,就会出现数据更新错误。在刚才的例子中,假设现在有两个客户端 A 和 B,同时执行刚才的临界区代码,就会出现错误,你可以看下下面这张图。

图片

可以看到,客户端 A 在 t1 时读取库存值 10 并扣减 1,在 t2 时,客户端 A 还没有把扣减后的库存值 9 写回 Redis,而在此时,客户端 B 读到库存值 10,也扣减了 1,B 记录的库存值也为 9 了。等到 t3 时,A 往 Redis 写回了库存值 9,而到 t4 时,B 也写回了库存值 9。

如果按正确的逻辑处理,客户端 A 和 B 对库存值各做了一次扣减,库存值应该为 8。所以,这里的库存值明显更新错了。

出现这个现象的原因是,临界区代码中的客户端读取数据、更新数据、再写回数据涉及了三个操作,而这三个操作在执行时并不具有互斥性,多个客户端基于相同的初始值进行修改,而不是基于前一个客户端修改后的值再修改。

为了保证数据并发修改的正确性,我们可以用锁把并行操作变成串行操作,串行操作就具有互斥性。一个客户端持有锁后,其他客户端只能等到锁释放,才能拿锁再进行修改。

下面的伪代码显示了使用锁来控制临界区代码的执行情况,你可以看下。

LOCK()
current = GET(id)
current--
SET(id, current)
UNLOCK()

1
2
3
4
5
6

虽然加锁保证了互斥性,但是加锁也会导致系统并发性能降低。

如下图所示,当客户端 A 加锁执行操作时,客户端 B、C 就需要等待。A 释放锁后,假设 B 拿到锁,那么 C 还需要继续等待,所以,t1 时段内只有 A 能访问共享数据,t2 时段内只有 B 能访问共享数据,系统的并发性能当然就下降了。

图片

和加锁类似,原子操作也能实现并发控制,但是原子操作对系统并发性能的影响较小,接下来,我们就来了解下 Redis 中的原子操作。

# Redis的两种原子操作方法

为了实现并发控制要求的临界区代码互斥执行,Redis 的原子操作采用了两种方法:

  • 把多个操作在 Redis 中实现成一个操作,也就是单命令操作;

  • 把多个操作写到一个 Lua 脚本中,以原子性方式执行单个 Lua 脚本。

我们先来看下 Redis 本身的单命令操作。

Redis 是使用单线程来串行处理客户端的请求操作命令的,所以,当 Redis 执行某个命令操作时,其他命令是无法执行的,这相当于命令操作是互斥执行的。当然,Redis 的快照生成、AOF 重写这些操作,可以使用后台线程或者是子进程执行,也就是和主线程的操作并行执行。不过,这些操作只是读取数据,不会修改数据,所以,我们并不需要对它们做并发控制。

你可能也注意到了,虽然 Redis 的单个命令操作可以原子性地执行,但是在实际应用中,数据修改时可能包含多个操作,至少包括读数据、数据增减、写回数据三个操作,这显然就不是单个命令操作了,那该怎么办呢?

别担心,Redis 提供了 INCR/DECR 命令,把这三个操作转变为一个原子操作了。INCR/DECR 命令可以对数据进行增值 / 减值操作,而且它们本身就是单个命令操作,Redis 在执行它们时,本身就具有互斥性。

比如说,在刚才的库存扣减例子中,客户端可以使用下面的代码,直接完成对商品 id 的库存值减 1 操作。即使有多个客户端执行下面的代码,也不用担心出现库存值扣减错误的问题。

DECR id 

1
2

所以,如果我们执行的 RMW 操作是对数据进行增减值的话,Redis 提供的原子操作 INCR 和 DECR 可以直接帮助我们进行并发控制。

但是,如果我们要执行的操作不是简单地增减数据,而是有更加复杂的判断逻辑或者是其他操作,那么,Redis 的单命令操作已经无法保证多个操作的互斥执行了。所以,这个时候,我们需要使用第二个方法,也就是 Lua 脚本。

Redis 会把整个 Lua 脚本作为一个整体执行,在执行的过程中不会被其他命令打断,从而保证了 Lua 脚本中操作的原子性。如果我们有多个操作要执行,但是又无法用 INCR/DECR 这种命令操作来实现,就可以把这些要执行的操作编写到一个 Lua 脚本中。然后,我们可以使用 Redis 的 EVAL 命令来执行脚本。这样一来,这些操作在执行时就具有了互斥性。

我再给你举个例子,来具体解释下 Lua 的使用。

当一个业务应用的访问用户增加时,我们有时需要限制某个客户端在一定时间范围内的访问次数,比如爆款商品的购买限流、社交网络中的每分钟点赞次数限制等。

那该怎么限制呢?我们可以把客户端 IP 作为 key,把客户端的访问次数作为 value,保存到 Redis 中。客户端每访问一次后,我们就用 INCR 增加访问次数。

不过,在这种场景下,客户端限流其实同时包含了对访问次数和时间范围的限制,例如每分钟的访问次数不能超过 20。所以,我们可以在客户端第一次访问时,给对应键值对设置过期时间,例如设置为 60s 后过期。同时,在客户端每次访问时,我们读取客户端当前的访问次数,如果次数超过阈值,就报错,限制客户端再次访问。你可以看下下面的这段代码,它实现了对客户端每分钟访问次数不超过 20 次的限制。

//获取ip对应的访问次数
current = GET(ip)
//如果超过访问次数超过20次,则报错
IF current != NULL AND current > 20 THEN
    ERROR "exceed 20 accesses per second"
ELSE
    //如果访问次数不足20次,增加一次访问计数
    value = INCR(ip)
    //如果是第一次访问,将键值对的过期时间设置为60s后
    IF value == 1 THEN
        EXPIRE(ip,60)
    END
    //执行其他操作
    DO THINGS
END

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

可以看到,在这个例子中,我们已经使用了 INCR 来原子性地增加计数。但是,客户端限流的逻辑不只有计数,还包括访问次数判断和过期时间设置。

对于这些操作,我们同样需要保证它们的原子性。否则,如果客户端使用多线程访问,访问次数初始值为 0,第一个线程执行了 INCR(ip) 操作后,第二个线程紧接着也执行了 INCR(ip),此时,ip 对应的访问次数就被增加到了 2,我们就无法再对这个 ip 设置过期时间了。这样就会导致,这个 ip 对应的客户端访问次数达到 20 次之后,就无法再进行访问了。即使过了 60s,也不能再继续访问,显然不符合业务要求。

所以,这个例子中的操作无法用 Redis 单个命令来实现,此时,我们就可以使用 Lua 脚本来保证并发控制。我们可以把访问次数加 1、判断访问次数是否为 1,以及设置过期时间这三个操作写入一个 Lua 脚本,如下所示:

local current
current = redis.call("incr",KEYS[1])
if tonumber(current) == 1 then
    redis.call("expire",KEYS[1],60)
end

1
2
3
4
5
6

假设我们编写的脚本名称为 lua.script,我们接着就可以使用 Redis 客户端,带上 eval 选项,来执行该脚本。脚本所需的参数将通过以下命令中的 keys 和 args 进行传递。

redis-cli  --eval lua.script  keys , args

1
2

这样一来,访问次数加 1、判断访问次数是否为 1,以及设置过期时间这三个操作就可以原子性地执行了。即使客户端有多个线程同时执行这个脚本,Redis 也会依次串行执行脚本代码,避免了并发操作带来的数据错误。

# 小结

在并发访问时,并发的 RMW 操作会导致数据错误,所以需要进行并发控制。所谓并发控制,就是要保证临界区代码的互斥执行。

Redis 提供了两种原子操作的方法来实现并发控制,分别是单命令操作和 Lua 脚本。因为原子操作本身不会对太多的资源限制访问,可以维持较高的系统并发性能。

但是,单命令原子操作的适用范围较小,并不是所有的 RMW 操作都能转变成单命令的原子操作(例如 INCR/DECR 命令只能在读取数据后做原子增减),当我们需要对读取的数据做更多判断,或者是我们对数据的修改不是简单的增减时,单命令操作就不适用了。

而 Redis 的 Lua 脚本可以包含多个操作,这些操作都会以原子性的方式执行,绕开了单命令操作的限制。不过,如果把很多操作都放在 Lua 脚本中原子执行,会导致 Redis 执行脚本的时间增加,同样也会降低 Redis 的并发性能。所以,我给你一个小建议:在编写 Lua 脚本时,你要避免把不需要做并发控制的操作写入脚本中。

当然,加锁也能实现临界区代码的互斥执行,只是如果有多个客户端加锁时,就需要分布式锁的支持了。所以,下节课,我就来和你聊聊分布式锁的实现。

# 每课一问

按照惯例,我向你提个小问题,Redis 在执行 Lua 脚本时,是可以保证原子性的,那么,在我举的 Lua 脚本例子(lua.script)中,你觉得是否需要把读取客户端 ip 的访问次数,也就是 GET(ip),以及判断访问次数是否超过 20 的判断逻辑,也加到 Lua 脚本中吗?

欢迎在留言区写下你的思考和答案,我们一起交流讨论。如果你觉得今天的内容对你有所帮助,也欢迎你分享给你的朋友或同事。我们下节课见。

# 精选评论

点击查看

Kaito

是否需要把读取客户端 ip 的访问次数 GET(ip),以及判断访问次数是否超过 20 的判断逻辑,也加到 Lua 脚本中?

我觉得不需要,理由主要有2个。

1、这2个逻辑都是读操作,不会对资源临界区产生修改,所以不需要做并发控制。

2、减少 lua 脚本中的命令,可以降低Redis执行脚本的时间,避免阻塞 Redis。

另外使用lua脚本时,还有一些注意点:

1、lua 脚本尽量只编写通用的逻辑代码,避免直接写死变量。变量通过外部调用方传递进来,这样 lua 脚本的可复用度更高。

2、建议先使用SCRIPT LOAD命令把 lua 脚本加载到 Redis 中,然后得到一个脚本唯一摘要值,再通过EVALSHA命令 + 脚本摘要值来执行脚本,这样可以避免每次发送脚本内容到 Redis,减少网络开销。
1
2
3
4
5
6
7
8
9
10
11
12
13

泠小墨

关于最后的问题,我觉得可以不判断访问次数,前提稍微修改下lua脚本,将current的值返回给客户端,这样客户端可以根据返回值进行处理;
local current 
current = redis.call('incr',KEYS[1]) 
if tonumber(current)==1 then redis.call('expire',KEYS[1],60) 
end  
return current
1
2
3
4
5
6

郭嵩阳

想问下老师,你们在开发项目中是否,经常使用lua脚本.或者是否建议经常去使用lua脚本,个人觉得lua脚本维护不是很方便,相听一下老师的意见
1

新世界


snailshen

是否需要把读取客户端 ip 的访问次数 GET(ip),以及判断访问次数是否超过 20 的判断逻辑,也加到 Lua 脚本中?
这个操作主要是保证incr为1时,expire操作,这两个命令保证原子性即可,所以我得出的结论是:
1、判断20的逻辑不用放在脚本中,可以通过lua脚本返回incr的访问次数
2、incr后的值,校验为1的逻辑和expire的操作要放到脚本中,这样严格保证了第一个时间段第一次访问时,设置的失效时间是准确的。

1
2
3
4
5

dieaway


test


可怜大灰狼


写点啥呢

请问老师,redis在生成快照和写AOF的时候没有做并发控制,那么对MULTI和Lua脚本这种多指令情况,会不会出现数据不一致的情况,譬如业务逻辑要求A,B,C三个数据同步原子修改保持逻辑一致,bgsave的时候会出现生成的快照中A被修改,而BC的修改被遗漏的情况么?
1

冯传博

对于这些操作,我们同样需要保证它们的原子性。否则,如果客户端使用多线程访问,访问次数初始值为 0,第一个线程执行了 INCR(ip) 操作后,第二个线程紧接着也执行了 INCR(ip),此时,ip 对应的访问次数就被增加到了 2,我们就无法再对这个 ip 设置过期时间了。这样就会导致,这个 ip 对应的客户端访问次数达到 20 次之后,就无法再进行访问了。即使过了 60s,也不能再继续访问,显然不符合业务要求。


如果第一个线程正常执行,是能够给ip设置过期时间的,也就能够满足业务。出现没有设置过期时间的情景,是线程一在设置过期时间之前退出了。

这段代码还有个问题是,在高并发的时候20次的访问限制可能会被击穿,也就是访问次数能够超过20次。

不知理解是否争取,请老师指教
1
2
3
4
5
6
7
8

#极客时间
上次更新: 2025/06/04, 15:06:15
Pika如何基于SSD实现大容量Redis?
如何使用Redis实现分布式锁?

← Pika如何基于SSD实现大容量Redis? 如何使用Redis实现分布式锁?→

最近更新
01
AIIDE
03-07
02
githubActionCICD实战
03-07
03
windows安装Deep-Live-Cam教程
08-11
更多文章>
Theme by Vdoing
总访问量 次 | 总访客数 人
| Copyright © 2021-2025 ggball | 赣ICP备2021008769号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式
×

评论

  • 评论 ssss
  • 回复
  • 评论 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
  • 回复
  • 评论 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
  • 回复
×