gball个人知识库
首页
基础组件
基础知识
算法&设计模式
  • 操作手册
  • 数据库
  • 极客时间
  • 每日随笔
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
  • 画图工具 (opens new window)
关于
  • 网盘 (opens new window)
  • 分类
  • 标签
  • 归档
项目
GitHub (opens new window)

ggball

后端界的小学生
首页
基础组件
基础知识
算法&设计模式
  • 操作手册
  • 数据库
  • 极客时间
  • 每日随笔
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
  • 画图工具 (opens new window)
关于
  • 网盘 (opens new window)
  • 分类
  • 标签
  • 归档
项目
GitHub (opens new window)
  • 面试

  • 数据库

  • linux

  • node

  • tensorFlow

  • 基础组件

  • 基础知识

  • 算法与设计模式

  • 分布式

  • 疑难杂症

  • go学习之旅

  • 极客时间

    • 设计模式之美

    • Redis核心技术与实战

      • 开篇词丨这样学Redis,才能技高一筹
      • 基本架构:一个键值数据库包含什么?
      • 数据结构:快速的Redis有哪些慢操作?
      • 高性能IO模型:为什么单线程Redis能那么快?
      • AOF日志:宕机了,Redis如何避免数据丢失?
      • 内存快照:宕机后,Redis如何实现快速恢复?
      • 数据同步:主从库如何实现数据一致?
      • 哨兵机制:主库挂了,如何不间断服务?
      • 哨兵集群:哨兵挂了,主从库还能切换吗?
      • 切片集群:数据增多了,是该加内存还是加实例?
      • 第1~9讲课后思考题答案及常见问题答疑
      • “万金油”的String,为什么不好用了?
      • 有一亿个keys要统计,应该用哪种集合?
      • GEO是什么?还可以定义新的数据类型吗?
      • 如何在Redis中保存时间序列数据?
      • 消息队列的考验:Redis有哪些解决方案?
      • 异步机制:如何避免单线程模型的阻塞?
      • 为什么CPU结构也会影响Redis的性能?
      • 波动的响应延迟:如何应对变慢的Redis?(上)
      • 波动的响应延迟:如何应对变慢的Redis?(下)
      • 删除数据后,为什么内存占用率还是很高?
      • 缓冲区:一个可能引发“惨案”的地方
      • 第11~21讲课后思考题答案及常见问题答疑
      • 旁路缓存:Redis是如何工作的?
      • 替换策略:缓存满了怎么办?
        • 设置多大的缓存容量合适?
        • Redis缓存有哪些淘汰策略?
        • 如何处理被淘汰的数据?
        • 小结
        • 每课一问
        • 精选评论
      • 缓存异常(上):如何解决缓存和数据库的数据不一致问题?
      • 缓存异常(下):如何解决缓存雪崩、击穿、穿透难题?
      • 缓存被污染了,该怎么办?
      • Pika如何基于SSD实现大容量Redis?
      • 无锁的原子操作:Redis如何应对并发访问?
      • 如何使用Redis实现分布式锁?
      • 事务机制:Redis能实现ACID属性吗?
      • Redis主从同步与故障切换,有哪些坑?
      • 脑裂:一次奇怪的数据丢失
      • 第23~33讲课后思考题答案及常见问题答疑
      • Codis VS Redis Cluster:我该选择哪一个集群方案?
      • Redis支撑秒杀场景的关键技术和实践都有哪些?
      • 数据分布优化:如何应对数据倾斜?
      • 加餐(二)_ Kaito:我是如何学习Redis的?
      • 加餐(四)-Redis客户端如何与服务器端交换命令和数据?
      • 加餐(六)_ Redis的使用规范小建议
      • 加餐(一)_ 经典的Redis学习资料有哪些?
      • 加餐(三)-Kaito:我希望成为在压力中成长的人
      • 加餐(五)- Redis有哪些好用的运维工具?
      • 41 _ 第35~40讲课后思考题答案及常见问题答疑
      • 期中测试题-一套习题,测出你的掌握程度
      • 加餐(七) _ 从微博的Redis实践中,我们可以学到哪些经验?
      • 期中测试题答案-这些问题,你都答对了吗?
      • 结束语 _ 从学习Redis到向Redis学习
      • 38 _ 通信开销:限制Redis Cluster规模的关键因素
      • 40 _ Redis的下一步:基于NVM内存的实践

替换策略:缓存满了怎么办?

你好,我是蒋德钧。

Redis 缓存使用内存来保存数据,避免业务应用从后端数据库中读取数据,可以提升应用的响应速度。那么,如果我们把所有要访问的数据都放入缓存,是不是一个很好的设计选择呢?其实,这样做的性价比反而不高。

举个例子吧。MySQL 中有 1TB 的数据,如果我们使用 Redis 把这 1TB 的数据都缓存起来,虽然应用都能在内存中访问数据了,但是,这样配置并不合理,因为性价比很低。一方面,1TB 内存的价格大约是 3.5 万元,而 1TB 磁盘的价格大约是 1000 元。另一方面,数据访问都是有局部性的,也就是我们通常所说的“八二原理”,80% 的请求实际只访问了 20% 的数据。所以,用 1TB 的内存做缓存,并没有必要。

为了保证较高的性价比,缓存的空间容量必然要小于后端数据库的数据总量。不过,内存大小毕竟有限,随着要缓存的数据量越来越大,有限的缓存空间不可避免地会被写满。此时,该怎么办呢?

解决这个问题就涉及到缓存系统的一个重要机制,即缓存数据的淘汰机制。简单来说,数据淘汰机制包括两步:第一,根据一定的策略,筛选出对应用访问来说“不重要”的数据;第二,将这些数据从缓存中删除,为新来的数据腾出空间,

这节课上,我就来和你聊聊缓存满了之后的数据淘汰机制。通常,我们也把它叫作缓存替换机制,同时还会讲到一系列选择淘汰数据的具体策略。了解了数据淘汰机制和相应策略,我们才可以选择合理的 Redis 配置,提高缓存命中率,提升应用的访问性能。

不过,在学习淘汰策略之前,我们首先要知道设置缓存容量的依据和方法。毕竟,在实际使用缓存时,我们需要决定用多大的空间来缓存数据。

# 设置多大的缓存容量合适?

缓存容量设置得是否合理,会直接影响到使用缓存的性价比。我们通常希望以最小的代价去获得最大的收益,所以,把昂贵的内存资源用在关键地方就非常重要了。

就像我刚才说的,实际应用中的数据访问是具有局部性的。下面有一张图,图里有红、蓝两条线,显示了不同比例数据贡献的访问量情况。蓝线代表了“八二原理”表示的数据局部性,而红线则表示在当前应用负载下,数据局部性的变化。

我们先看看蓝线。它表示的就是“八二原理”,有 20% 的数据贡献了 80% 的访问了,而剩余的数据虽然体量很大,但只贡献了 20% 的访问量。这 80% 的数据在访问量上就形成了一条长长的尾巴,我们也称为“长尾效应”。

图片

所以,如果按照“八二原理”来设置缓存空间容量,也就是把缓存空间容量设置为总数据量的 20% 的话,就有可能拦截到 80% 的访问。

为什么说是“有可能”呢?这是因为,“八二原理”是对大量实际应用的数据访问情况做了统计后,得出的一个统计学意义上的数据量和访问量的比例。具体到某一个应用来说,数据访问的规律会和具体的业务场景有关。对于最常被访问的 20% 的数据来说,它们贡献的访问量,既有可能超过 80%,也有可能不到 80%。

我们再通过一个电商商品的场景,来说明下“有可能”这件事儿。一方面,在商品促销时,热门商品的信息可能只占到总商品数据信息量的 5%,而这些商品信息承载的可能是超过 90% 的访问请求。这时,我们只要缓存这 5% 的数据,就能获得很好的性能收益。另一方面,如果业务应用要对所有商品信息进行查询统计,这时候,即使按照“八二原理”缓存了 20% 的商品数据,也不能获得很好的访问性能,因为 80% 的数据仍然需要从后端数据库中获取。

接下来,我们再看看数据访问局部性示意图中的红线。近年来,有些研究人员专门对互联网应用(例如视频播放网站)中,用户请求访问内容的分布情况做过分析,得到了这张图中的红线。

在这条红线上,80% 的数据贡献的访问量,超过了传统的长尾效应中 80% 数据能贡献的访问量。原因在于,用户的个性化需求越来越多,在一个业务应用中,不同用户访问的内容可能差别很大,所以,用户请求的数据和它们贡献的访问量比例,不再具备长尾效应中的“八二原理”分布特征了。也就是说,20% 的数据可能贡献不了 80% 的访问,而剩余的 80% 数据反而贡献了更多的访问量,我们称之为重尾效应。

正是因为 20% 的数据不一定能贡献 80% 的访问量,我们不能简单地按照“总数据量的 20%”来设置缓存最大空间容量。在实践过程中,我看到过的缓存容量占总数据量的比例,从 5% 到 40% 的都有。这个容量规划不能一概而论,是需要结合应用数据实际访问特征和成本开销来综合考虑的。

这其实也是我一直在和你分享的经验,系统的设计选择是一个权衡的过程:大容量缓存是能带来性能加速的收益,但是成本也会更高,而小容量缓存不一定就起不到加速访问的效果。一般来说,我会建议把缓存容量设置为总数据量的 15% 到 30%,兼顾访问性能和内存空间开销。

对于 Redis 来说,一旦确定了缓存最大容量,比如 4GB,你就可以使用下面这个命令来设定缓存的大小了:

CONFIG SET maxmemory 4gb

1
2

不过,缓存被写满是不可避免的。即使你精挑细选,确定了缓存容量,还是要面对缓存写满时的替换操作。缓存替换需要解决两个问题:决定淘汰哪些数据,如何处理那些被淘汰的数据。

接下来,我们就来学习下,Redis 中的数据淘汰策略。

# Redis缓存有哪些淘汰策略?

Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略。我们可以按照是否会进行数据淘汰把它们分成两类:

  • 不进行数据淘汰的策略,只有 noeviction 这一种。

  • 会进行淘汰的 7 种其他策略。

会进行淘汰的 7 种策略,我们可以再进一步根据淘汰候选数据集的范围把它们分成两类:

  • 在设置了过期时间的数据中进行淘汰,包括 volatile-random、volatile-ttl、volatile-lru、volatile-lfu(Redis 4.0 后新增)四种。

  • 在所有数据范围内进行淘汰,包括 allkeys-lru、allkeys-random、allkeys-lfu(Redis 4.0 后新增)三种。

我把这 8 种策略的分类,画到了一张图里:

图片

下面我就来具体解释下各个策略。

默认情况下,Redis 在使用的内存空间超过 maxmemory 值时,并不会淘汰数据,也就是设定的 noeviction 策略。对应到 Redis 缓存,也就是指,一旦缓存被写满了,再有写请求来时,Redis 不再提供服务,而是直接返回错误。Redis 用作缓存时,实际的数据集通常都是大于缓存容量的,总会有新的数据要写入缓存,这个策略本身不淘汰数据,也就不会腾出新的缓存空间,我们不把它用在 Redis 缓存中。

我们再分析下 volatile-random、volatile-ttl、volatile-lru 和 volatile-lfu 这四种淘汰策略。它们筛选的候选数据范围,被限制在已经设置了过期时间的键值对上。也正因为此,即使缓存没有写满,这些数据如果过期了,也会被删除。

例如,我们使用 EXPIRE 命令对一批键值对设置了过期时间后,无论是这些键值对的过期时间是快到了,还是 Redis 的内存使用量达到了 maxmemory 阈值,Redis 都会进一步按照 volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这四种策略的具体筛选规则进行淘汰。

  • volatile-ttl 在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。

  • volatile-random 就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。

  • volatile-lru 会使用 LRU 算法筛选设置了过期时间的键值对。

  • volatile-lfu 会使用 LFU 算法选择设置了过期时间的键值对。

可以看到,volatile-ttl 和 volatile-random 筛选规则比较简单,而 volatile-lru 因为涉及了 LRU 算法,所以我会在分析 allkeys-lru 策略时再详细解释。volatile-lfu 使用了 LFU 算法,我会在第 26 讲中具体解释,现在你只需要知道,它是在 LRU 算法的基础上,同时考虑了数据的访问时效性和数据的访问次数,可以看作是对淘汰策略的优化。

相对于 volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这四种策略淘汰的是设置了过期时间的数据,allkeys-lru、allkeys-random、allkeys-lfu 这三种淘汰策略的备选淘汰数据范围,就扩大到了所有键值对,无论这些键值对是否设置了过期时间。它们筛选数据进行淘汰的规则是:

  • allkeys-random 策略,从所有键值对中随机选择并删除数据;

  • allkeys-lru 策略,使用 LRU 算法在所有数据中进行筛选。

  • allkeys-lfu 策略,使用 LFU 算法在所有数据中进行筛选。

这也就是说,如果一个键值对被删除策略选中了,即使它的过期时间还没到,也需要被删除。当然,如果它的过期时间到了但未被策略选中,同样也会被删除。

接下来,我们就看看 volatile-lru 和 allkeys-lru 策略都用到的 LRU 算法吧。LRU 算法工作机制并不复杂,我们一起学习下。

LRU 算法的全称是 Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。

那具体是怎么筛选的呢?LRU 会把所有的数据组织成一个链表,链表的头和尾分别表示 MRU 端和 LRU 端,分别代表最近最常使用的数据和最近最不常用的数据。我们看一个例子。

图片

我们现在有数据 6、3、9、20、5。如果数据 20 和 3 被先后访问,它们都会从现有的链表位置移到 MRU 端,而链表中在它们之前的数据则相应地往后移一位。因为,LRU 算法选择删除数据时,都是从 LRU 端开始,所以把刚刚被访问的数据移到 MRU 端,就可以让它们尽可能地留在缓存中。

如果有一个新数据 15 要被写入缓存,但此时已经没有缓存空间了,也就是链表没有空余位置了,那么,LRU 算法做两件事:

  • 数据 15 是刚被访问的,所以它会被放到 MRU 端;

  • 算法把 LRU 端的数据 5 从缓存中删除,相应的链表中就没有数据 5 的记录了。

其实,LRU 算法背后的想法非常朴素:它认为刚刚被访问的数据,肯定还会被再次访问,所以就把它放在 MRU 端;长久不访问的数据,肯定就不会再被访问了,所以就让它逐渐后移到 LRU 端,在缓存满时,就优先删除它。

不过,LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。

所以,在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录)。然后,Redis 在决定淘汰的数据时,第一次会随机选出 N 个数据,把它们作为一个候选集合。接下来,Redis 会比较这 N 个数据的 lru 字段,把 lru 字段值最小的数据从缓存中淘汰出去。

Redis 提供了一个配置参数 maxmemory-samples,这个参数就是 Redis 选出的数据个数 N。例如,我们执行如下命令,可以让 Redis 选出 100 个数据作为候选数据集:

CONFIG SET maxmemory-samples 100

1
2

当需要再次淘汰数据时,Redis 需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是:能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的 lru 值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了 maxmemory-samples,Redis 就把候选数据集中 lru 字段值最小的数据淘汰出去。

这样一来,Redis 缓存不用为所有的数据维护一个大链表,也不用在每次数据访问时都移动链表项,提升了缓存的性能。

好了,到这里,我们就学完了除了使用 LFU 算法以外的 5 种缓存淘汰策略,我再给你三个使用建议。

  • 优先使用 allkeys-lru 策略

  • 。这样,可以充分利用 LRU 这一经典缓存算法的优势,把最近最常访问的数据留在缓存中,提升应用的访问性能。如果你的业务数据中有明显的冷热数据区分,我建议你使用 allkeys-lru 策略。

  • 如果业务应用中的数据访问频率相差不大,没有明显的冷热数据区分,建议使用 allkeys-random 策略,随机选择淘汰的数据就行。

  • 如果你的业务中有置顶的需求

  • ,比如置顶新闻、置顶视频,那么,可以使用 volatile-lru 策略,同时不给这些置顶数据设置过期时间。这样一来,这些需要置顶的数据一直不会被删除,而其他数据会在过期时根据 LRU 规则进行筛选。

一旦被淘汰的数据被选定后,Redis 怎么处理这些数据呢?这就要说到缓存替换时的具体操作了。

# 如何处理被淘汰的数据?

一般来说,一旦被淘汰的数据选定后,如果这个数据是干净数据,那么我们就直接删除;如果这个数据是脏数据,我们需要把它写回数据库,如下图所示:

图片

那怎么判断一个数据到底是干净的还是脏的呢?

干净数据和脏数据的区别就在于,和最初从后端数据库里读取时的值相比,有没有被修改过。干净数据一直没有被修改,所以后端数据库里的数据也是最新值。在替换时,它可以被直接删除。

而脏数据就是曾经被修改过的,已经和后端数据库中保存的数据不一致了。此时,如果不把脏数据写回到数据库中,这个数据的最新值就丢失了,就会影响应用的正常使用。

这么一来,缓存替换既腾出了缓存空间,用来缓存新的数据,同时,将脏数据写回数据库,也保证了最新数据不会丢失。

不过,对于 Redis 来说,它决定了被淘汰的数据后,会把它们删除。即使淘汰的数据是脏数据,Redis 也不会把它们写回数据库。所以,我们在使用 Redis 缓存时,如果数据被修改了,需要在数据修改时就将它写回数据库。否则,这个脏数据被淘汰时,会被 Redis 删除,而数据库里也没有最新的数据了。

# 小结

在这节课上,我围绕着“缓存满了该怎么办”这一问题,向你介绍了缓存替换时的数据淘汰策略,以及被淘汰数据的处理方法。

Redis 4.0 版本以后一共提供了 8 种数据淘汰策略,从淘汰数据的候选集范围来看,我们有两种候选范围:一种是所有数据都是候选集,一种是设置了过期时间的数据是候选集。另外,无论是面向哪种候选数据集进行淘汰数据选择,我们都有三种策略,分别是随机选择,根据 LRU 算法选择,以及根据 LFU 算法选择。当然,当面向设置了过期时间的数据集选择淘汰数据时,我们还可以根据数据离过期时间的远近来决定。

一般来说,缓存系统对于选定的被淘汰数据,会根据其是干净数据还是脏数据,选择直接删除还是写回数据库。但是,在 Redis 中,被淘汰数据无论干净与否都会被删除,所以,这是我们在使用 Redis 缓存时要特别注意的:当数据修改成为脏数据时,需要在数据库中也把数据修改过来。

选择哪种缓存策略是值得我们多加琢磨的,它在筛选数据方面是否能筛选出可能被再次访问的数据,直接决定了缓存效率的高与低。

很简单的一个对比,如果我们使用随机策略,刚筛选出来的要被删除的数据可能正好又被访问了,此时应用就只能花费几毫秒从数据库中读取数据了。而如果使用 LRU 策略,被筛选出来的数据往往是经过时间验证了,如果在一段时间内一直没有访问,本身被再次访问的概率也很低了。

所以,我给你的建议是,先根据是否有始终会被频繁访问的数据(例如置顶消息),来选择淘汰数据的候选集,也就是决定是针对所有数据进行淘汰,还是针对设置了过期时间的数据进行淘汰。候选数据集范围选定后,建议优先使用 LRU 算法,也就是,allkeys-lru 或 volatile-lru 策略。

当然,设置缓存容量的大小也很重要,我的建议是:结合实际应用的数据总量、热数据的体量,以及成本预算,把缓存空间大小设置在总数据量的 15% 到 30% 这个区间就可以。

# 每课一问

按照惯例,我给你提一个小问题。这节课,我向你介绍了 Redis 缓存在应对脏数据时,需要在数据修改的同时,也把它写回数据库,针对我们上节课介绍的缓存读写模式:只读缓存,以及读写缓存中的两种写回策略,请你思考下,Redis 缓存对应哪一种或哪几种模式?

欢迎在留言区写下你的思考和答案,我们一起交流讨论。如果你觉得今天的内容对你有所帮助,也欢迎你分享给你的朋友或 / 同事。我们下节课见。

# 精选评论

点击查看

Kaito

Redis在用作缓存时,使用只读缓存或读写缓存的哪种模式?

1、只读缓存模式:每次修改直接写入后端数据库,如果Redis缓存不命中,则什么都不用操作,如果Redis缓存命中,则删除缓存中的数据,待下次读取时从后端数据库中加载最新值到缓存中。

2、读写缓存模式+同步直写策略:由于Redis在淘汰数据时,直接在内部删除键值对,外部无法介入处理脏数据写回数据库,所以使用Redis作读写缓存时,只能采用同步直写策略,修改缓存的同时也要写入到后端数据库中,从而保证修改操作不被丢失。但这种方案在并发场景下会导致数据库和缓存的不一致,需要在特定业务场景下或者配合分布式锁使用。

当一个系统引入缓存时,需要面临最大的问题就是,如何保证缓存和后端数据库的一致性问题,最常见的3个解决方案分别是Cache Aside、Read/Write Throught和Write Back缓存更新策略。

1、Cache Aside策略:就是文章所讲的只读缓存模式。读操作命中缓存直接返回,否则从后端数据库加载到缓存再返回。写操作直接更新数据库,然后删除缓存。这种策略的优点是一切以后端数据库为准,可以保证缓存和数据库的一致性。缺点是写操作会让缓存失效,再次读取时需要从数据库中加载。这种策略是我们在开发软件时最常用的,在使用Memcached或Redis时一般都采用这种方案。

2、Read/Write Throught策略:应用层读写只需要操作缓存,不需要关心后端数据库。应用层在操作缓存时,缓存层会自动从数据库中加载或写回到数据库中,这种策略的优点是,对于应用层的使用非常友好,只需要操作缓存即可,缺点是需要缓存层支持和后端数据库的联动。

3、Write Back策略:类似于文章所讲的读写缓存模式+异步写回策略。写操作只写缓存,比较简单。而读操作如果命中缓存则直接返回,否则需要从数据库中加载到缓存中,在加载之前,如果缓存已满,则先把需要淘汰的缓存数据写回到后端数据库中,再把对应的数据放入到缓存中。这种策略的优点是,写操作飞快(只写缓存),缺点是如果数据还未来得及写入后端数据库,系统发生异常会导致缓存和数据库的不一致。这种策略经常使用在操作系统Page Cache中,或者应对大量写操作的数据库引擎中。

除了以上提到的缓存和数据库的更新策略之外,还有一个问题就是操作缓存或数据库发生异常时如何处理?例如缓存操作成功,数据库操作失败,或者反过来,还是有可能会产生不一致的情况。

比较简单的解决方案是,根据业务设计好更新缓存和数据库的先后顺序来降低影响,或者给缓存设置较短的有效期来降低不一致的时间。如果需要严格保证缓存和数据库的一致性,即保证两者操作的原子性,这就涉及到分布式事务问题了,常见的解决方案就是我们经常听到的两阶段提交(2PC)、三阶段提交(3PC)、TCC、消息队列等方式来保证了,方案也会比较复杂,一般用在对于一致性要求较高的业务场景中。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

yeek

记录几个问题:

1. 淘汰对当前请求的延迟问题;
2. 淘汰数据的上限是多少?仅满足当前set所需的内存空间么?
3. 如果随机多次依然不存在比候选队列中最小lru还小的数据,且内存空间还需要继续释放,是否有执行时间上限?
1
2
3
4
5

不正经、绅士

能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的 lru 值。
这里有个疑问,请教老师,这样第二次及后续进入的备选淘汰集合中的数据lru都小于第一次的,淘汰的也是lru最小的,那第一次进入淘汰集合的数据这样不就不会被选中淘汰了呢
1
2

#极客时间
上次更新: 2025/06/04, 15:06:15
旁路缓存:Redis是如何工作的?
缓存异常(上):如何解决缓存和数据库的数据不一致问题?

← 旁路缓存:Redis是如何工作的? 缓存异常(上):如何解决缓存和数据库的数据不一致问题?→

最近更新
01
AIIDE
03-07
02
githubActionCICD实战
03-07
03
windows安装Deep-Live-Cam教程
08-11
更多文章>
Theme by Vdoing
总访问量 次 | 总访客数 人
| Copyright © 2021-2025 ggball | 赣ICP备2021008769号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式
×

评论

  • 评论 ssss
  • 回复
  • 评论 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
  • 回复
  • 评论 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
  • 回复
×