gball个人知识库
首页
基础组件
基础知识
算法&设计模式
  • 操作手册
  • 数据库
  • 极客时间
  • 每日随笔
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
  • 画图工具 (opens new window)
关于
  • 网盘 (opens new window)
  • 分类
  • 标签
  • 归档
项目
GitHub (opens new window)

ggball

后端界的小学生
首页
基础组件
基础知识
算法&设计模式
  • 操作手册
  • 数据库
  • 极客时间
  • 每日随笔
  • 学习
  • 面试
  • 心情杂货
  • 实用技巧
  • 友情链接
  • 画图工具 (opens new window)
关于
  • 网盘 (opens new window)
  • 分类
  • 标签
  • 归档
项目
GitHub (opens new window)
  • 面试

  • 数据库

  • linux

  • node

  • tensorFlow

  • 基础组件

  • 基础知识

  • 算法与设计模式

  • 分布式

  • 疑难杂症

  • go学习之旅

  • 极客时间

    • 设计模式之美

      • 开篇词 (1讲)

      • 设计模式学习导读 (3讲)

      • 设计原则与思想:面向对象 (11讲)

      • 设计原则与思想:设计原则 (12讲)

        • 理论一:对于单一职责原则,如何判定某个类的职责是否够“单一”?
        • 理论二:如何做到“对扩展开放、修改关闭”?扩展和修改各指什么?
        • 理论三:里式替换(LSP)跟多态有何区别?哪些代码违背了LSP?
        • 理论四:接口隔离原则有哪三种应用?原则中的“接口”该如何理解?
        • 理论五:控制反转、依赖反转、依赖注入,这三者有何区别和联系?
        • 理论六:我为何说KISS、YAGNI原则看似简单,却经常被用错?
        • 理论七:重复的代码就一定违背DRY吗?如何提高代码的复用性?
        • 理论八:如何用迪米特法则(LOD)实现“高内聚、松耦合”?
        • 实战一(上):针对业务系统的开发,如何做需求分析和设计?
        • 实战一(下):如何实现一个遵从设计原则的积分兑换系统?
        • 实战二(上):针对非业务的通用框架开发,如何做需求分析和设计?
        • 实战二(下):如何实现一个支持各种统计规则的性能计数器?
          • 小步快跑、逐步迭代
          • 面向对象设计与实现
            • 1.划分职责进而识别出有哪些类
            • 2.定义类及类与类之间的关系
            • 3.将类组装起来并提供执行入口
          • Review设计与实现
          • 重点回顾
          • 课堂讨论
          • 精选评论
      • 设计原则与思想:规范与重构 (11讲)

      • 设计原则与思想:总结课 (3讲)

      • 设计模式与范式:创建型 (7讲)

      • 设计模式与范式:结构型 (8讲)

      • 设计模式与范式:行为型 (18讲)

      • 设计模式与范式:总结课 (2讲)

      • 开源与项目实战:开源实战 (14讲)

      • 开源与项目实战:项目实战 (9讲)

      • 开源与项目实战:总结课 (2讲)

      • 不定期加餐 (11讲)

      • 结束语 (1讲)

    • Redis核心技术与实战

实战二(下):如何实现一个支持各种统计规则的性能计数器?

# 26 | 实战二(下):如何实现一个支持各种统计规则的性能计数器?

在上一节课中,我们对计数器框架做了需求分析和粗略的模块划分。今天这节课,我们利用面向对象设计、实现方法,并结合之前学过的设计思想、设计原则来看一下,如何编写灵活、可扩展的、高质量的代码实现。

话不多说,现在就让我们正式开始今天的学习吧!

# 小步快跑、逐步迭代

在上一节课中,我们将整个框架分为数据采集、存储、聚合统计、显示这四个模块。除此之外,关于统计触发方式(主动推送、被动触发统计)、统计时间区间(统计哪一个时间段内的数据)、统计时间间隔(对于主动推送方法,多久统计推送一次)我们也做了简单的设计。这里我就不重新描述了,你可以打开上一节课回顾一下。

虽然上一节课的最小原型为我们奠定了迭代开发的基础,但离我们最终期望的框架的样子还有很大的距离。我自己在写这篇文章的时候,试图去实现上面罗列的所有功能需求,希望写出一个完美的框架,发现这是件挺烧脑的事情,在写代码的过程中,一直有种“脑子不够使”的感觉。我这个有十多年工作经验的人尚且如此,对于没有太多经验的开发者来说,想一下子把所有需求都实现出来,更是一件非常有挑战的事情。一旦无法顺利完成,你可能就会有很强的挫败感,就会陷入自我否定的情绪中。

不过,即便你有能力将所有需求都实现,可能也要花费很大的设计精力和开发时间,迟迟没有产出,你的leader会因此产生很强的不可控感。对于现在的互联网项目来说,小步快跑、逐步迭代是一种更好的开发模式。所以,我们应该分多个版本逐步完善这个框架。第一个版本可以先实现一些基本功能,对于更高级、更复杂的功能,以及非功能性需求不做过高的要求,在后续的v2.0、v3.0……版本中继续迭代优化。

针对这个框架的开发,我们在v1.0版本中,暂时只实现下面这些功能。剩下的功能留在v2.0、v3.0版本,也就是我们后面的第39节和第40节课中再来讲解。

  • 数据采集:负责打点采集原始数据,包括记录每次接口请求的响应时间和请求时间。

  • 存储:负责将采集的原始数据保存下来,以便之后做聚合统计。数据的存储方式有很多种,我们暂时只支持 Redis 这一种存储方式,并且,采集与存储两个过程同步执行。

  • 聚合统计:负责将原始数据聚合为统计数据,包括响应时间的最大值、最小值、平均值、99.9 百分位值、99 百分位值,以及接口请求的次数和 tps。

  • 显示:负责将统计数据以某种格式显示到终端,暂时只支持主动推送给命令行和邮件。命令行间隔 n 秒统计显示上 m 秒的数据(比如,间隔 60s 统计上 60s 的数据)。邮件每日统计上日的数据。

现在这个版本的需求比之前的要更加具体、简单了,实现起来也更加容易一些。实际上,学会结合具体的需求,做合理的预判、假设、取舍,规划版本的迭代设计开发,也是一个资深工程师必须要具备的能力。

# 面向对象设计与实现

在和课中,我们把面向对象设计与实现分开来讲解,界限划分比较明显。在实际的软件开发中,这两个过程往往是交叉进行的。一般是先有一个粗糙的设计,然后着手实现,实现的过程发现问题,再回过头来补充修改设计。所以,对于这个框架的开发来说,我们把设计和实现放到一块来讲解。

回顾上一节课中的最小原型的实现,所有的代码都耦合在一个类中,这显然是不合理的。接下来,我们就按照之前讲的面向对象设计的几个步骤,来重新划分、设计类。

# 1.划分职责进而识别出有哪些类

根据需求描述,我们先大致识别出下面几个接口或类。这一步不难,完全就是翻译需求。

  • MetricsCollector 类负责提供 API,来采集接口请求的原始数据。我们可以为 MetricsCollector 抽象出一个接口,但这并不是必须的,因为暂时我们只能想到一个 MetricsCollector 的实现方式。

  • MetricsStorage 接口负责原始数据存储,RedisMetricsStorage 类实现 MetricsStorage 接口。这样做是为了今后灵活地扩展新的存储方法,比如用 HBase 来存储。

  • Aggregator 类负责根据原始数据计算统计数据。

  • ConsoleReporter 类、EmailReporter 类分别负责以一定频率统计并发送统计数据到命令行和邮件。至于 ConsoleReporter 和 EmailReporter 是否可以抽象出可复用的抽象类,或者抽象出一个公共的接口,我们暂时还不能确定。

# 2.定义类及类与类之间的关系

接下来就是定义类及属性和方法,定义类与类之间的关系。这两步没法分得很开,所以,我们今天将它们合在一起来讲解。

大致地识别出几个核心的类之后,我的习惯性做法是,先在IDE中创建好这几个类,然后开始试着定义它们的属性和方法。在设计类、类与类之间交互的时候,我会不断地用之前学过的设计原则和思想来审视设计是否合理,比如,是否满足单一职责原则、开闭原则、依赖注入、KISS原则、DRY原则、迪米特法则,是否符合基于接口而非实现编程思想,代码是否高内聚、低耦合,是否可以抽象出可复用代码等等。

MetricsCollector类的定义非常简单,具体代码如下所示。对比上一节课中最小原型的代码,MetricsCollector通过引入RequestInfo类来封装原始数据信息,用一个采集函数代替了之前的两个函数。

public class MetricsCollector {
  private MetricsStorage metricsStorage;// 基于接口而非实现编程

  // 依赖注入
  public MetricsCollector(MetricsStorage metricsStorage) {
    this.metricsStorage = metricsStorage;
  }

  // 用一个函数代替了最小原型中的两个函数
  public void recordRequest(RequestInfo requestInfo) {
    if (requestInfo == null || StringUtils.isBlank(requestInfo.getApiName())) {
      return;
    }
    metricsStorage.saveRequestInfo(requestInfo);
  }
}

public class RequestInfo {
  private String apiName;
  private double responseTime;
  private long timestamp;
  //... 省略 constructor/getter/setter 方法...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

MetricsStorage类和RedisMetricsStorage类的属性和方法也比较明确。具体的代码实现如下所示。注意,一次性取太长时间区间的数据,可能会导致拉取太多的数据到内存中,有可能会撑爆内存。对于Java来说,就有可能会触发OOM(OutOfMemory)。而且,即便不出现OOM,内存还够用,但也会因为内存吃紧,导致频繁的FullGC,进而导致系统接口请求处理变慢,甚至超时。这个问题解决起来并不难,先留给你自己思考一下。我会在第40节课中解答。

public interface MetricsStorage {
  void saveRequestInfo(RequestInfo requestInfo);

  List<RequestInfo> getRequestInfos(String apiName, long startTimeInMillis, long endTimeInMillis);

  Map<String, List<RequestInfo>> getRequestInfos(long startTimeInMillis, long endTimeInMillis);
}

public class RedisMetricsStorage implements MetricsStorage {
  //... 省略属性和构造函数等...
  @Override
  public void saveRequestInfo(RequestInfo requestInfo) {
    //...
  }

  @Override
  public List<RequestInfo> getRequestInfos(String apiName, long startTimestamp, long endTimestamp) {
    //...
  }

  @Override
  public Map<String, List<RequestInfo>> getRequestInfos(long startTimestamp, long endTimestamp) {
    //...
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

MetricsCollector类和MetricsStorage类的设计思路比较简单,不同的人给出的设计结果应该大差不差。但是,统计和显示这两个功能就不一样了,可以有多种设计思路。实际上,如果我们把统计显示所要完成的功能逻辑细分一下的话,主要包含下面4点:

  • 根据给定的时间区间,从数据库中拉取数据;

  • 根据原始数据,计算得到统计数据;

  • 将统计数据显示到终端(命令行或邮件);

  • 定时触发以上 3 个过程的执行。

实际上,如果用一句话总结一下的话,面向对象设计和实现要做的事情,就是把合适的代码放到合适的类中。所以,我们现在要做的工作就是,把以上的4个功能逻辑划分到几个类中。划分的方法有很多种,比如,我们可以把前两个逻辑放到一个类中,第3个逻辑放到另外一个类中,第4个逻辑作为上帝类(GodClass)组合前面两个类来触发前3个逻辑的执行。当然,我们也可以把第2个逻辑单独放到一个类中,第1、3、4都放到另外一个类中。

至于到底选择哪种排列组合方式,判定的标准是,让代码尽量地满足低耦合、高内聚、单一职责、对扩展开放对修改关闭等之前讲到的各种设计原则和思想,尽量地让设计满足代码易复用、易读、易扩展、易维护。

我们暂时选择把第1、3、4逻辑放到ConsoleReporter或EmailReporter类中,把第2个逻辑放到Aggregator类中。其中,Aggregator类负责的逻辑比较简单,我们把它设计成只包含静态方法的工具类。具体的代码实现如下所示:

public class Aggregator {
  public static RequestStat aggregate(List<RequestInfo> requestInfos, long durationInMillis) {
    double maxRespTime = Double.MIN_VALUE;
    double minRespTime = Double.MAX_VALUE;
    double avgRespTime = -1;
    double p999RespTime = -1;
    double p99RespTime = -1;
    double sumRespTime = 0;
    long count = 0;
    for (RequestInfo requestInfo : requestInfos) {
      ++count;
      double respTime = requestInfo.getResponseTime();
      if (maxRespTime < respTime) {
        maxRespTime = respTime;
      }
      if (minRespTime > respTime) {
        minRespTime = respTime;
      }
      sumRespTime += respTime;
    }
    if (count != 0) {
      avgRespTime = sumRespTime / count;
    }
    long tps = (long)(count / durationInMillis * 1000);
    Collections.sort(requestInfos, new Comparator<RequestInfo>() {
      @Override
      public int compare(RequestInfo o1, RequestInfo o2) {
        double diff = o1.getResponseTime() - o2.getResponseTime();
        if (diff < 0.0) {
          return -1;
        } else if (diff > 0.0) {
          return 1;
        } else {
          return 0;
        }
      }
    });
    int idx999 = (int)(count * 0.999);
    int idx99 = (int)(count * 0.99);
    if (count != 0) {
      p999RespTime = requestInfos.get(idx999).getResponseTime();
      p99RespTime = requestInfos.get(idx99).getResponseTime();
    }
    RequestStat requestStat = new RequestStat();
    requestStat.setMaxResponseTime(maxRespTime);
    requestStat.setMinResponseTime(minRespTime);
    requestStat.setAvgResponseTime(avgRespTime);
    requestStat.setP999ResponseTime(p999RespTime);
    requestStat.setP99ResponseTime(p99RespTime);
    requestStat.setCount(count);
    requestStat.setTps(tps);
    return requestStat;
  }
}

public class RequestStat {
  private double maxResponseTime;
  private double minResponseTime;
  private double avgResponseTime;
  private double p999ResponseTime;
  private double p99ResponseTime;
  private long count;
  private long tps;
  //... 省略 getter/setter 方法...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

ConsoleReporter类相当于一个上帝类,定时根据给定的时间区间,从数据库中取出数据,借助Aggregator类完成统计工作,并将统计结果输出到命令行。具体的代码实现如下所示:

public class ConsoleReporter {
  private MetricsStorage metricsStorage;
  private ScheduledExecutorService executor;

  public ConsoleReporter(MetricsStorage metricsStorage) {
    this.metricsStorage = metricsStorage;
    this.executor = Executors.newSingleThreadScheduledExecutor();
  }
  
  // 第 4 个代码逻辑:定时触发第 1、2、3 代码逻辑的执行;
  public void startRepeatedReport(long periodInSeconds, long durationInSeconds) {
    executor.scheduleAtFixedRate(new Runnable() {
      @Override
      public void run() {
        // 第 1 个代码逻辑:根据给定的时间区间,从数据库中拉取数据;
        long durationInMillis = durationInSeconds * 1000;
        long endTimeInMillis = System.currentTimeMillis();
        long startTimeInMillis = endTimeInMillis - durationInMillis;
        Map<String, List<RequestInfo>> requestInfos =
                metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis);
        Map<String, RequestStat> stats = new HashMap<>();
        for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) {
          String apiName = entry.getKey();
          List<RequestInfo> requestInfosPerApi = entry.getValue();
          // 第 2 个代码逻辑:根据原始数据,计算得到统计数据;
          RequestStat requestStat = Aggregator.aggregate(requestInfosPerApi, durationInMillis);
          stats.put(apiName, requestStat);
        }
        // 第 3 个代码逻辑:将统计数据显示到终端(命令行或邮件);
        System.out.println("Time Span: [" + startTimeInMillis + ", " + endTimeInMillis + "]");
        Gson gson = new Gson();
        System.out.println(gson.toJson(stats));
      }
    }, 0, periodInSeconds, TimeUnit.SECONDS);
  }
}

public class EmailReporter {
  private static final Long DAY_HOURS_IN_SECONDS = 86400L;

  private MetricsStorage metricsStorage;
  private EmailSender emailSender;
  private List<String> toAddresses = new ArrayList<>();

  public EmailReporter(MetricsStorage metricsStorage) {
    this(metricsStorage, new EmailSender(/* 省略参数 */));
  }

  public EmailReporter(MetricsStorage metricsStorage, EmailSender emailSender) {
    this.metricsStorage = metricsStorage;
    this.emailSender = emailSender;
  }

  public void addToAddress(String address) {
    toAddresses.add(address);
  }

  public void startDailyReport() {
    Calendar calendar = Calendar.getInstance();
    calendar.add(Calendar.DATE, 1);
    calendar.set(Calendar.HOUR_OF_DAY, 0);
    calendar.set(Calendar.MINUTE, 0);
    calendar.set(Calendar.SECOND, 0);
    calendar.set(Calendar.MILLISECOND, 0);
    Date firstTime = calendar.getTime();
    Timer timer = new Timer();
    timer.schedule(new TimerTask() {
      @Override
      public void run() {
        long durationInMillis = DAY_HOURS_IN_SECONDS * 1000;
        long endTimeInMillis = System.currentTimeMillis();
        long startTimeInMillis = endTimeInMillis - durationInMillis;
        Map<String, List<RequestInfo>> requestInfos =
                metricsStorage.getRequestInfos(startTimeInMillis, endTimeInMillis);
        Map<String, RequestStat> stats = new HashMap<>();
        for (Map.Entry<String, List<RequestInfo>> entry : requestInfos.entrySet()) {
          String apiName = entry.getKey();
          List<RequestInfo> requestInfosPerApi = entry.getValue();
          RequestStat requestStat = Aggregator.aggregate(requestInfosPerApi, durationInMillis);
          stats.put(apiName, requestStat);
        }
        // TODO: 格式化为 html 格式,并且发送邮件
      }
    }, firstTime, DAY_HOURS_IN_SECONDS * 1000);
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

# 3.将类组装起来并提供执行入口

因为这个框架稍微有些特殊,有两个执行入口:一个是MetricsCollector类,提供了一组API来采集原始数据;另一个是ConsoleReporter类和EmailReporter类,用来触发统计显示。框架具体的使用方式如下所示:

public class Demo {
  public static void main(String[] args) {
    MetricsStorage storage = new RedisMetricsStorage();
    ConsoleReporter consoleReporter = new ConsoleReporter(storage);
    consoleReporter.startRepeatedReport(60, 60);

    EmailReporter emailReporter = new EmailReporter(storage);
    emailReporter.addToAddress("[email protected]");
    emailReporter.startDailyReport();

    MetricsCollector collector = new MetricsCollector(storage);
    collector.recordRequest(new RequestInfo("register", 123, 10234));
    collector.recordRequest(new RequestInfo("register", 223, 11234));
    collector.recordRequest(new RequestInfo("register", 323, 12334));
    collector.recordRequest(new RequestInfo("login", 23, 12434));
    collector.recordRequest(new RequestInfo("login", 1223, 14234));

    try {
      Thread.sleep(100000);
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

# Review设计与实现

我们前面讲到了SOLID、KISS、DRY、YAGNI、LOD等设计原则,基于接口而非实现编程、多用组合少用继承、高内聚低耦合等设计思想。我们现在就来看下,上面的代码实现是否符合这些设计原则和思想。

  • MetricsCollector

MetricsCollector负责采集和存储数据,职责相对来说还算比较单一。它基于接口而非实现编程,通过依赖注入的方式来传递MetricsStorage对象,可以在不需要修改代码的情况下,灵活地替换不同的存储方式,满足开闭原则。

  • MetricsStorage、RedisMetricsStorage

MetricsStorage和RedisMetricsStorage的设计比较简单。当我们需要实现新的存储方式的时候,只需要实现MetricsStorage接口即可。因为所有用到MetricsStorage和RedisMetricsStorage的地方,都是基于相同的接口函数来编程的,所以,除了在组装类的地方有所改动(从RedisMetricsStorage改为新的存储实现类),其他接口函数调用的地方都不需要改动,满足开闭原则。

  • Aggregator

Aggregator类是一个工具类,里面只有一个静态函数,有50行左右的代码量,负责各种统计数据的计算。当需要扩展新的统计功能的时候,需要修改aggregate()函数代码,并且一旦越来越多的统计功能添加进来之后,这个函数的代码量会持续增加,可读性、可维护性就变差了。所以,从刚刚的分析来看,这个类的设计可能存在职责不够单一、不易扩展等问题,需要在之后的版本中,对其结构做优化。

  • ConsoleReporter、EmailReporter

ConsoleReporter和EmailReporter中存在代码重复问题。在这两个类中,从数据库中取数据、做统计的逻辑都是相同的,可以抽取出来复用,否则就违反了DRY原则。而且整个类负责的事情比较多,职责不是太单一。特别是显示部分的代码,可能会比较复杂(比如Email的展示方式),最好是将显示部分的代码逻辑拆分成独立的类。除此之外,因为代码中涉及线程操作,并且调用了Aggregator的静态函数,所以代码的可测试性不好。

今天我们给出的代码实现还是有诸多问题的,在后面的章节(第39、40讲)中,我们会慢慢优化,给你展示整个设计演进的过程,这比直接给你最终的最优方案要有意义得多!实际上,优秀的代码都是重构出来的,复杂的代码都是慢慢堆砌出来的。所以,当你看到那些优秀而复杂的开源代码或者项目代码的时候,也不必自惭形秽,觉得自己写不出来。毕竟罗马不是一天建成的,这些优秀的代码也是靠几年的时间慢慢迭代优化出来的。

# 重点回顾

好了,今天的内容到此就讲完了。我们一块总结回顾一下,你需要掌握的重点内容。

写代码的过程本就是一个修修改改、不停调整的过程,肯定不是一气呵成的。你看到的那些大牛开源项目的设计和实现,也都是在不停优化、修改过程中产生的。比如,我们熟悉的Unix系统,第一版很简单、粗糙,代码不到1万行。所以,迭代思维很重要,不要刚开始就追求完美。

面向对象设计和实现要做的事情,就是把合适的代码放到合适的类中。至于到底选择哪种划分方法,判定的标准是让代码尽量地满足低耦合、高内聚、单一职责、对扩展开放对修改关闭等之前讲的各种设计原则和思想,尽量地做到代码可复用、易读、易扩展、易维护。

# 课堂讨论

今天课堂讨论题有下面两道。

  • 对于今天的设计与代码实现,你有没有发现哪些不合理的地方?有哪些可以继续优化的地方呢?或者留言说说你的设计方案。

  • 说一个你觉得不错的开源框架或者项目,聊聊你为什么觉得它不错?

欢迎在留言区写下你的答案,和同学一起交流和分享。如果有收获,也欢迎你把这篇文章分享给你的朋友。

# 精选评论

点击查看

geek

新年快乐一起学习一起提高2020


辣么大

想了三点,希望和小伙伴们讨论一下: 1、RequestInfosave一次写入一条。是否需要考虑通过设置参数,例如一次写入1000或10000条?好处不用频繁的与数据库建立连接。 2、聚合统计Aggregator是否可以考虑不写代码实现统计的逻辑,而是使用一条SQL查询实现同样的功能? 3、EmailReporterstartDailyReport没指定明确的统计起止时间。设置统计指定区间的requestinfo,例如08:00~次日08:00,然后发邮件。


Jxin

沙发! 1.栏主新年快乐。零点发帖,啧啧啧。 2.给出github地址吧,我们来提pr,一个学习用demo大家合力下就当练手,没必要自己死磕全实现哈。 3.关于邮件和控制台两个接入层。实现代码重了。可以把定时统计下沉到下一层来实现,然后两个接入层共用这个实现。然后收集的统计数据的类型应该可以提供差异化配置的api。在消费统计数据的消息时,做差异化分发,实现各接入层仅看到自己想看的数据。

4.spring1.x~3.x,兼容老版本做得挺好。springboot在自动装配的实现上下足了功夫(插件化,易插拔)。netty的实现也挺挺讲究,还能顺带学网络相关知识。以上其实都运用一系列设计原则。在没看栏主专栏前,我是啃这些学的场景。


堵车

要写出优美的代码,首先要有一颗对丑陋代码厌恶的心


Eden Ma


卫江

上面的代码设计与实现,我认为有两个重点是需要改进的: 1.不同的统计规则,通过抽象统计规则抽象类,每一个具体的统计(最大时间,平均时间)单独实现,同时在Aggregator内中通过List等容器保存所有的统计规则实现类,提供注册函数来动态添加新的统计规则,使得Aggregator否则开闭原则,各个统计规则也符合单一责任原则。 2.显示方式很明显是一个变化点,需要抽象封装,抽象出显示接口,在汇报类中通过依赖注入的方式来使用具体的显示类,这样一来,reporter类更加责任单一,我们也可以通过扩展新的显示类来扩展功能,符合开闭原则,每一个显示实现类更加否则单一责任。


Murrre

https://github.com/murreIsCoding/learning_geek/tree/master/src/main/java/design_pattern/demo2/performance_monitoring 敲了一下,主要是实现了redis存储部分逻辑,redis命令不是很熟,可能有更好的方案


哈喽沃德

什么时候开始讲设计模式呢


啦啦啦

新年快乐


何沛


Young!

我觉得在使用方面需要优化,1,建议可以将使用哪个数据库存储方式,时间范围,使用邮箱还是命令行作为输出做成类似spring的可配置项,2,减少启动代码,最好使用一行或者注解就可以起到拦截请求并统计输出的作用。


Frank

打卡,今天又进步一点点,利用元旦的时间,将上一篇和这一篇的内容过了一遍,参照文章的思路使用代码简单实现了一遍,加深了理解。


Jeff.Smile

争哥这套课程确实呕心沥血,哈哈


wenxueliu

赞,记录思考过程才是最真实的案例


Monday

RequestInfo.timestamp属性是接口响应的开始时间戳吗?如果是的话,说明我被Demo中的10234,11234这类数据给误导了


Geek_3b1096

喜欢一小步一小步改进过程


东方奇骥


初八

我想说分布式情况下这些定时任务还要依赖外部吗


相逢是缘

打卡 针对非业务的架构实现方式 一、小步快跑、逐步迭代 现在原型的分析基础上,划分功能模块,根据功能模块,先定义V1版本的功能 二、面向对象设计和分析 根据功能模块,定义类的属性和方法、以及类与类之间的关系。 1、划分职责,识别出有哪些类 2、定义类的属性、方法,以及类和类之间的关系 3、将类组装起来,提供入口 识别出核心的类之后,可以在IDE中创建好几个类(可能会有数据类型的辅助类等),然后尝试着定义属性和方法。 在设计时,使用单一职责原则、开闭原则、依赖注入、KISS原则、DRY原则、迪米特法则、里式替换原则,以及是否基于接口而非实现编程思想,代码是否高内聚、低耦合,是否可以抽象出可复用的代码等设计原则和思想来审视设计是否合理。

三、Review设计与实现 使用SOLID、KISS、DRY、YAGNI、LOD等设计原则,基于接口而非实现编程、多用组合少用继承、高内聚低耦合等设计思想,review类的设计和实现,有需要改进的地方,放到V2、V3版本中持续演进。


Yang


#极客时间
上次更新: 2025/06/04, 15:06:15
实战二(上):针对非业务的通用框架开发,如何做需求分析和设计?
理论一:什么情况下要重构?到底重构什么?又该如何重构?

← 实战二(上):针对非业务的通用框架开发,如何做需求分析和设计? 理论一:什么情况下要重构?到底重构什么?又该如何重构?→

最近更新
01
AIIDE
03-07
02
githubActionCICD实战
03-07
03
windows安装Deep-Live-Cam教程
08-11
更多文章>
Theme by Vdoing
总访问量 次 | 总访客数 人
| Copyright © 2021-2025 ggball | 赣ICP备2021008769号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式
×

评论

  • 评论 ssss
  • 回复
  • 评论 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
  • 回复
  • 评论 ssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
  • 回复
×